DEPARTMENT OF PHYSICS- PO, PSO, CO

2.6.1 PO, PSO & CO				
Department	PO	PSO		
Physics	Students completing a Science	PG	Students completing a M.Sc. program	
	program should be able to:		in Physics should be able to:	
	 Demonstrate fundamental knowledge in natural sciences Apply knowledge of mathematics, natural science and computer science to find solutions to scientific and engineering problems. 		1. Demonstrate substantial knowledge in various subfields of physics such as classical mechanics, mathematical physics, quantum mechanics, electrodynamics, solid state physics, statistical mechanics, lasers and optical fibers etc.	
	 3. Design and conduct experiments, analyse and interpret data and deduce valid conclusions. 		2. Acquire considerable knowledge in mathematical methods, and practical knowledge in supported fields like computer science.	
	4. Communicate effectively.5. Recognize the need for lifelong learning and find means to achieve the same.		3. Gain research experience within a specific field of physics through a supervised project and become familiar with contemporary research within various subfields of physics.	
	 6. Understand the impact of scientific solutions in a societal context and to be able to respond effectively to the needs for sustainable development in the society. 7. Apply critical thinking through 		 4. Complete an original, creative project that demonstrably advances human knowledge within their subfield. 5. Communicate effectively the results of the research project to professionals within their subfield and within the broader physics community, through both oral presentation and written work. 	
	independent thought andinformed judgement, and developcreative and innovative solutions.8. Develop professional, ethical		6. Demonstrate fluency in comprehension of the research literature in subfields of their interest.	
	and moral responsibility.		7. Acquire scientific, technical and engineering skills to become employable in a variety of industries.	

		CO –PG	
Department	Course Code	Course	Course outcome
Physics	PHY1C01	Classical Mechanics	 Students should be able to: Formulate Lagrangian and Hamiltonian framework for classical systems. Find eigen values and eigen functions for small oscillations. Understand the foundations of nonlinear oscillations and chaotic motion.
	PHY1C02	Mathematical Physics – I	 Students should be able to: Perform mathematical manipulations using vectors, matrices and tensors. Solve partial differential equations with appropriate initial or boundary conditions. Become fluent in the use of Fourier and Laplace transformations to solve differential equations and derive asymptotic properties of solutions become familiar with special functions
	PHY1C03	Electrodynamics and Plasma Physics	 Students should be able to: Interpret the deeper meaning of the Maxwell's equations and derive the wave equation using it. Understand the propagation of plane electromagnetic waves in lossless media and interfaces. Derive the wave characteristics of wave guides and cavity resonators. Understand the basics of relativistic electrodynamics Analyze the motion of charged particles in electromagnetic fields Formulate kinetic and fluid descriptions of plasma
	PHY1C04	Electronics	Students should be able to: .Understand the characteristics of field effect transistors and design amplifiers, switches and logic gates using them. . Familiarize with the working principle of optoelectronic devices. .Learn how operational amplifiers are modeled and analyzed, and to design Op-Amp circuits to perform operations such as integration, differentiation and filtering on electronic signals . Minimize Boolean algebra using Karnaugh map and representation using logic gates.
	PHY1P01	General Physics Practical -I	 Students should be able to: Measure Y & σ of a material Determine viscosity of a given liquid Measure mode constants of a vibrating strip

11112000		. Code elementary programs in Python
PHY2C08	Computational Physics	 system .Understand the behavior of microcanonical, canonical and grand canonical ensembles. . Formulate density matrix for various ensembles . Discuss the thermodynamic behaviour of an ideal Fermi gas and Bose gas.
PHY2C07	Statistical Mechanics	Students should be able to: . Define and discuss the concepts of microstate and macrostate and phase space of a model
DUV2C07	Statistical Machanics	functions of mathematical physics . become familiar with the basic ideas of group theory . Solve partial differential equations with appropriate initial or boundary conditions with Green function techniques. . Understand Integral equations and Integral transforms Students should be able to:
PHY2C06	Mathematical Physics – II	 Estimate scattering amplitude and cross-section Students should be able to: Apply techniques of complex analysis, such as contour integrals, to the study of special
		 analyzing quantum mechanical systems. Learn the fundamental postulates of quantum mechanics Solve time-independent Schrodinger equation for particle in a box, finite potential barrier, harmonic oscillator, hydrogen atom etc. Demonstrate the matrix representation of the eigenvalue problem and angular momentum operators.
PHY1P02 PHY2C05	Electronics Practical – I Quantum Mechanics -I	 Students should be able to: Design a single stage bipolar transistor amplifier Design and construct a Darlington pair amplifier Design and construct an R.F oscillator using tunnel diode Design and construct OPAMP based summing and averaging amplifier, Wien bridge oscillator, astablemultivibrator, integrator and differentiator Design and construct a voltage controlled oscillator using timer IC 555 Students should be able to: Learn the mathematical tools needed for
		 Determine the resistance and inductance of an unknown inductor Measure magnetic susceptibility of a material Analyze various diffraction patters

	1	
		. Learn how to use lists, tuples, and dictionaries in Python programs
		. Perform arithmetic operations and data plotting
		using Python.
		. Implement numerical methods such as curve
		fitting, numerical integration, ordinary
		differential equation solving and Fourier
		transforms in Python.
		. Simulate 1D and 2D motion and 1D
		Schrodinger equation
PHY2P03	General Physics	Students should be able to:
	Practical - II	. Determine the surface tension and Thermal
		conductivity of a given liquid
		. Measure ionization potential of Mercury
		. Determine thickness of air film using a Fabry-
		Perrot etalon
		. Analyze beam profile of a given laser.
		. Determine Cauchy's constants using liquid
		prism
		. Draw magnetic hysteresis curve.
PHY2P04	Electronics Practical –	Students should be able to:
11112104	II	. Students should be able to:
	11	
		transistor and trigger a SCR using it.
		. Design and construct a monostable
		multivibrator and a triangular wave generator
		using OPAMP
		. Design and construct an astablemultivibrator
		using timer IC 555
		. Analyze a 4 bit binary counter (IC 7493)
		and a 4 bit decade counter(IC 7490) at
		various modes
		. Set up four bit shift register IC 7495 and verify
 		shift operations
PHY3C09	Quantum Mechanics -	Students should be able to:
	II	. Apply approximation methods for time-
		independent problems.
		. Solve variational equation to find the ground
		state of H and He atoms.
		. Analyze atom-field interactions using time-
		dependent perturbation theory.
		. Discuss relativistic quantum mechanics
		. Understand the principles of canonical
		quantization of fields
PHY3C10	Nuclear and Particle	Students should be able to:
	Physics	. Develop an understanding of nuclear forces
		. Analyze the mechanism and energetics of
		radioactive decay
		. Understand the formalism models describing
		the structure and properties of nuclei and nuclear
		collisions.
		COMISIONS.

		. Become familiar with nuclear radiation
		detectors and associated electronics
		. Demonstrate knowledge of the elementary
		particles and the forces governing them.
PHY3C11	Solid State Physics	Students should be able to:
		. Classify real solid materials based on basic
		concepts like atomic arrangement,
		microstructure and crystal binding.
		. Apply the theory of X-ray diffraction in
		reciprocal space to determine the lattice structure
		of crystalline materials.
		. Formulate basic model of lattice vibrations for
		describing the physics of crystalline materials.
		. Formulate electron properties in a periodic
		potential and develop a qualitative understanding
		of the relation between band structure and the
		electrical/optical properties of a material.
		. Explain the physical principles for different
		types of electric and magnetic phenomena in
		solid materials.
		. Understand the foundations of
		superconductivity.
Elective -I	Exportmontal	Students should be able to:
	Experimental	
PHY3E05	Techniques	. Use roughing pump, turbo pump, ion bump and
		different vacuum gauges.
		. Fabricate thin films and measure the thickness
		accurately.
		. Become familiar with accelerator techniques.
		. Employ nuclear techniques for material
		analysis.
		. Employ X-ray diffraction technique to analyze
		crystalline structure of materials
PHY4Pr	Project	Students should be able to:
		. Demonstrate a detailed physical and
		mathematical understanding of an advanced
		topic in physics
		. Demonstrate specialized analytical skills and
		techniques necessary to carry out research in an
		advanced topic in physics
		. Approach and solve new problems in an
		advanced topic in physics
		. Analyze, interpret and critically evaluate
		research findings
		. Comply with regulatory frameworks and
		practice professional ethics relevant to physics
PHY3P05	Modern Physics	Students should be able to:
	Practical -I	. Determine the carrier concentration in the
		given semiconductor specimen
		. Use an ESR spectrometer measure the g factor
		. Determine dielectric constant of a nonpolar
		. Determine dielectric constant of a nonpolar

ı			
			liquid . Determine the numerical aperture, attenuation and band width of an optical fiber . Measure the band gap energy of a semiconductor using four probe method and diodes . Determine charge to mass ratio of the electron by Thomson's method
	PHY4C12	Atomic and Molecular	by Thomson's method. Students should be able to:
	F1114C12	Spectroscopy	 Students should be able to: Understand the effect of electric & magnetic field on atomic spectra. Understand the rotationally and vibrationally active transitions in diatomic molecules, selection rules governing them and detection instruments. Analyze the rotational Raman spectrum of symmetric top molecules Derive transport properties through vibrational analysis of band systems. Apply spin resonance spectroscopy to explore the chemical species with unpaired electrons in materials.
	Elective –II	Lagar Systems Ontical	Students should be able to:
	PHY4E13	Laser Systems, Optical Fibers and Applications	 Learn working principle and energy level diagrams various CW and pulsed lasers. Analyze optical resonators to determine stable operating regimes. Understand the effect of nonlinear susceptibility terms in light-matter interactions. Understand the basic characteristics of an optical fiber, solve the scalar wave equation and the identify the propagating modes of a fiber.
	Elective -III PHY4E20	Microprocessors and Applications	 Students should be able to: The student will be able to analyze, specify, design, write and test assembly language programs of moderate complexity. Learn timing, memory interfacing and data transfer schemes in 8085 microprocessor based systems. Effectively utilize microcontroller peripherals. Design and implement microprocessor-based embedded systems. Become familiar with 8051 microcontroller.
	PHY4Pr1	Project	Students should be able to: . Demonstrate a detailed physical and mathematical understanding of an advanced topic in physics . Demonstrate specialized analytical skills and techniques necessary to carry out research in an

		advanced tonic in thereign
		advanced topic in physics
		. Approach and solve new problems in an
		advanced topic in physics
		. Analyze, interpret and critically evaluate
		research findings
		. Comply with regulatory frameworks and
		practice professional ethics relevant to physics
PHY4P06	Modern Physics	Students should be able to:
	Practical –II	. Use a GM counter to measure the absorption
		coefficient of a material for beta & gamma
		rays
		. Determine the end point energy of the beta
		particles using Feather analysis
		. Record the absorption spectrum of a molecule
		and determine the dissociation energy
		. Determine refractive index of a transparent
		_
		material by measuring the Brewster's angle
		. Determine the velocity and compressibility of
		sound in liquids
		. Characterize a Zener diode at low and ambient
		temperatures
		. Interface ADC 0800/0808 to a 8085
		microprocessor and write ALP to convert a
		given DC voltage
PHY4P07	Computational Physics	Students should be able to use Python to:
	Practical	. Do least square fitting
		. Implement Trapezoidal method and Simpson's
		method for numerical integration
		. Implement Newton Raphson method for
		finding solutions of an algebraic equation
		. Solve second order differential equation using
		Runge-Kutta method
		. Do Monte Carlo simulations
		. Simulate the trajectory of a particle moving in a
		Coulomb field
		. Solve Schrödinger equation for a particle in a
		box, numerically find the eigen values and plot
		the wave functions
		. Simulate a two slit photon interference
X7' X7		experiment
Viva Voce		
(Comprehe		
nsive)		