

B.Sc. BIOTECHNOLOGY

PROGRAMME SPECIFIC OUTCOME

PSO1	Understand the types of cells, cell structure and function at biochemical, molecular and genetic level
PSO2	Illustrate the cellular molecular and biochemical process that provide the platform for basic research in Biosciences
PSO3	Perform procedures in Cell biology, Microbiology, Genetics, Biochemistry, Environmental Biotechnology, Molecular Biology Bioprocess technology, Plant tissue culture and Immunology as per laboratory standards
PSO4	Understand the applications of Biotechnology in Environment Protection, Medical field, Agriculture and Industry

COURSE OUTCOME

SJBTY1B01: CELLBIOLOGY

SJBTY1B01.1: Deduce the structure and functions of plasma membrane, cyto skeleton and cell organelles

SJBTY1B01.2: Describe the structural organization and functions of chromosomes

SJBTY1B01.3: Examine cell cycle and apoptosis

SJBTY1B01.4: Understand cell communication and signaling

SJBTY1B01.5: Determine the transport system in the cell

SJBTY1B01.6: Distinguish between prokaryotes and eukaryotes

SJBTY1C01: Environmental Biotechnology

SJBTY1C01.1: Understanding the fundamentals of ecology for sustenance

SJBTY1C01.2: Analyzing the interactions and biogeochemical interactions for optimal ecosystem function

SJBTY1C01.3: Evaluating the impact of anthropogenic activities in the environment

SJBTY1C01.4: Assessing the possible pollution control strategies for a sustainable environment

SJBTY2B02: General Microbiology

SJBTY2B02.1: Understand the history and basic principles of microbiology

SJBTY2B02.2: Analyze various culture media and their applications

SJBTY2B02.3: Evaluate various physical and chemical means of sterilization

SJBTY2B02.4: Inspect microbial cell structure, growth and reproduction

SJBTY2C02: Environmental Biotechnology

SJBTY2C02.1: Assessing the extend of water pollution for a healthy environment

SJBTY2C02.2: Devising wastewater treatment plans to control pollution

SJBTY2C02.3: Evaluate different biological wastewater treatment methods for municipal and industrial waste treatment

SJBTY2C02.4: Understanding water purification methods

SJA11: Biodiversity-Scope and Relevance

SJA11.1: Assess the importance and value of biodiversity for ecological functions

SJA11.2: Understand the components and magnitude of earth's biodiversity

SJA11.3: Evaluate the cause and effects of biodiversity loss

SJA11.4: Apply inventorying and monitoring tools to study dynamics in biodiversity

SJA11.5: Apprise in situ and ex situ methods for biodiversity conservation

SJA12: Research Methodology

SJA12.1: Illustrate the methodology for scientific research

SJA12.2: Explain the methodology for proper collection of literature for research

SJA12.3: Evaluate and decide the apt procedures and data analysis tools for research

SJA12.4: Develop a suitable outline for thesis based on the topic

SJA12.5: Identifying the opportunities for publishing research work

SJBTY3B03:Biochemistry

SJBTY3B03.1: Appraise the buffers and buffering action in biological system

SJBTY3B03.2: Analyze the basic biochemical aspects such as structure and functions of biological molecules

SJBTY3B03.3: Summarize the major energy production pathways

SJBTY3B03.4: Deduce the classes of enzymes and mechanism of enzyme action

SJBTY3B03.5: Examine the principle and types of important separation techniques such as chromatography and electrophoresis

SJBTY3C03: Environmental Biotechnology

SJBTY3C03.1: Determining the significance of different solid waste treatment methodologies

SJBTY3C03.2: Understanding the process and advantages of bioremediation for waste management

SJBTY3C03.3: Outline the xenobiotic degradation for cleaning up the environment

SJBTY3C03.4: Design methods for air pollution management to control industrial emissions

SJBTY4B04(P): Biochemistry Practical

SJBTY4B04(P).1: Perform the basic calculations in laboratory techniques in preparing buffers and reagents

SJBTY4B04(P).2: Perform quantitative analysis of various biological molecules

SJBTY4B04(P).3: Demonstrate the separation techniques for biological molecules

SJA13: Natural Resource Management

SJA13.1: Evaluate the economics, ecological and socio-cultural approaches for sustainable utilization of natural resources

SJA13.2: Develop methods for the sustainable utilization of soil, water and energy resource

SJA13.3: Analyze National Biodiversity Action Plan for conservation

SJA13.4: Design strategies for conservation of forest and its resources

SJA13.5: Evaluate the applicability of national and international efforts for natural resource management and conservation

SJA14: Intellectual Property Rights

SJA14.1: Understand the concept of intellectual property right

SJA14.2: Explain patent system and documentation procedure

SJA14.3: Analyze the usability of copyright, trademark and industrial design laws for the mutual benefit of user and manufacturer

SJA14.4: Evaluate geographical indication protection system for identifying a particular type of product

SJA14.5: Apprise the role of IPR in biotechnology industry

SJBTY4B05: Genetics

SJBTY4B05.1: Identify the inheritance patterns of characteristics for Genetic Counseling

SJBTY4B05.2: Understand the molecular basis of inheritance

SJBTY4B05.3: Examine the microbial genetic system for biomedical and industrial applications

SJBTY4B05.4: Apply the genetic principles in a population for predicting genetic dynamics

SJBTY4B06(P): Practicals in Genetics

SJBTY4B06(P).1: Demonstrate the division patterns observed in different types of eukaryotic cells

SJBTY4B06(P).2: Understand the chromosomal modifications to cope up with gene expression

SJBTY4B06(P).3: Examine the genetic abnormalities based on karyotyping

SJBTY4B06(P).4: Perform bacterial recombination methods

SJBTY4C04: Environmental Biotechnology

SJBTY4C04.1: Design environment friendly methods for waste treatment

SJBTY4C04.2: Devise methods for green energy from waste

SJBTY4C04.3: Apply bioprocess technology for developing ecofriendly products

SJBTY4C04.4: Evaluating environmentally sustainable methods for leaching

SJBTY4C05(P): Environmental Biotechnology Practicals

SJBYT4C05(P).1: Develop methods for aseptic maintenance, isolation and enumeration of different types of microorganisms.

SJBYT4C05(P).2: Perform different methods of water quality analysis

SJBYT4C05(P).3: Understand basic procedures for microbial identification and characterization

SJBYT4C05(P).4: Analyze the growth pattern of bacteria and develop different methods to assess the growth

SJBYT4C05(P).5: Devise methods for green energy from waste

SJBYT4C05(P).6: Design bioremediation methods for removal of toxic chemicals

SJBTY5B07: Molecular Biology

SJBTY5B07.1: Understanding the structure and organization of DNA

SJBTY5B07.2: Examine the composition of prokaryotic and eukaryotic genome

SJBTY5B07.3: Analyze the mechanisms for genome maintenance relevant for biomedical research

SJBTY5B07.4: Appraise the stages of prokaryotic and eukaryotic gene expression

SJBTY5B07.5: Illustrate the gene expression regulatory mechanism involved in protein synthesis

SJBTY5B08: Immunology and Immunotechnology

SJBTY5B08.1: Understand the history and basic concepts of immunity

SJBTY5B08.2: Examine immune system – types, cells and organs

SJBTY5B08.3: Illustrate properties of Antigens and structure of antibodies

SJBTY5B08.4: Outline the mechanisms of Ag-Ab interactions

SJBTY5B08.5: Compare and contrast hypersensitivity and autoimmune diseases

SJBTY5B08.6: Explain vaccines, monoclonal antibody and tumour immunology

SJBTY5B09: Bioprocess technology

SJBTY5B09.1: Evaluate different methods available for the isolation of microbial stains for bioprocess industry

SJBTY5B09.2: Develop strategies for stain improvement to improve the yield of industrial fermentation

SJBTY5B09.3: Formulate optimum growth medium for fermentation industry

SJBTY5B09.4: Select appropriate fermenter and operational conditions for bioprocess industry

SJBTY5B09.5: Apprise the applicability of enzyme technology in bioprocess

SJBTY5D01: Introduction to Biotechnology

SJBTY5D01.1: Understanding the basic tools in biotechnology

SJBTY5D01.2: Apply biotechnology principles in food industry

SJBTY5D01.3: Examine the role of biotechnology in modernizing agriculture

SJBTY5D01.4: Apprise the applications of biotechnology in healthcare industry

SJBTY6B10(P): Practicals in Molecular Biology

SJBTY6B10(P).1: Understand the different methods of isolation of DNA from plant and microbial cells

SJBTY6B10(P).2: Perform the quantification and separation procedures for DNA

SJBTY6B10(P).3: Analyze the gene expression and recombination in bacteria

SJBTY6B11(P): Immunology and Immunotechnology Practicals

SJBTY6B11(P).1: Identify blood group

SJBTY6B11(P).2: Demonstrate blood film preparation and identification of blood cells

SJBTY6B11(P).3: Analyse various methods to estimate unknown amount of Antigen

SJBTY6B11(P).4: Understand different methods of antigen-antibody interaction

SJBTY6B12(P): Practicals in Bioprocess technology

SJBTY6B12(P).1: Apply the methods of bioprocess technology for demonstrating fermentation process in laboratory

SJBTY6B12(P).2: Perform procedures for identification and isolation of antibiotic producing microbes

SJBTY6B12(P).3: Formulate optimum growth conditions for fermentation industry

SJBTY6B12(P).4: Understand the applications of enzyme immobilization

SJBTY6B13: Plant Biotechnology

SJBTY6B13.1 : Understand basic techniques of tissue culture, types of cultures and in vitro morphogenesis

SJBTY6B13.2 : Analyze plant hormones and secondary metabolites

SJBTY6B13.3 : Examine genetic manipulation with special focus on agrobacterium mediated gene delivery

SJBTY6B13.4: Evaluate transgenic plants and applications of genetically modified plants.

SJBTY6B13.5 : Illustrate tissue culture applications in horticulture, agriculture, pharmacology industry

SJBTY6B14: Animal Biotechnology

SJBTY6B14.1: Understand the principles of animal cell culture

SJBTY6B14.2: Outline laboratory design and equipment used in laboratory

SJBTY6B14.3: Summarise media preparations and sterilization techniques

SJBTY6B14.4: Evaluate primary cell culture and cell lines

SJBTY6B14.5: Analyse various cytotoxicity assays and cell proliferation assays

SJBTY6B14.6: Understand the protocol for cryopreservation of cells

SJBTY6B15: Recombinant DNA Technology and Bioinformatics

SJBTY6B15.1: Apply tools and techniques in recombinant DNA technology for genetic manipulation

SJBTY6B15.2: Evaluate the features and applications of different cloning vectors

SJBTY6B15.3: Plan transformation strategies based on the vector and host

SJBTY6B15.4: Discuss the applications of rDNA technology in medicine and agriculture

SJBTY6B15.5: Evaluate the applications of bioinformatics and proteomics in rDNA technology

SJBTY6B17: Medical Biotechnology

SJBTY617.1: Assess the use of microbiological and biochemical techniques to identify pathogen

SJBTY617.2: Identify the pathogenesis in bacterial infection

SJBTY617.3: Illustrate the pathogenesis in viral infection

SJBTY617.4: Integrate infection and immunity for devising treatment procedures

SJBTY6B16(P): Plant Biotechnology Practical

SJBTY6B16(P).1: Understand preparation and sterilization of plant tissue culture media

SJBTY6B16(P).2: Develop the method of callus induction

SJBTY6B16(P).3: Describe production of artificial seeds

SJBTY6B16(P).4: Analyze the protocol for isolating protoplasts

SJBTY6B18: Project

SJBTY6B18.1- Build strong practical skills in Basic Science research

SJBTY6B18.2- Develop the aptitude to work on scientific problem and look for alternative solutions.

SJBTY6B18.3- Create proficiency in literature writing and research methodology

SJBTY6B18.4 Develop team spirit and collaboration skills